Calculator Allowed

Show work. Round your answers to the thousandths place when applicable.

1. Show that the vector from $R=(-4,2)$ to $S=(-1,6)$ is equal to the vector from $P=(2,-1)$ to $Q=(5,3)$.

$$
\begin{aligned}
\overrightarrow{R S} & =\langle-1-4,6-2\rangle & \overrightarrow{P Q} & =\langle 5-2,3--1\rangle \\
& =\langle\cdot 3,4\rangle & & =\langle 3,4\rangle
\end{aligned}
$$

2. Vector \mathbf{v} has initial point $(-3,4)$ and terminal point $(-5,2)$. Find $|\mathbf{v}|$.

$$
\vec{v}=\langle-5--3,2-4\rangle=\langle-2,-2\rangle \quad|\vec{v}|=\sqrt{(-2)^{2}+(-2)^{2}}=\sqrt{8}=2 \sqrt{2}
$$

3. Given $\mathbf{v}=\langle-4,-2\rangle$ and $\mathbf{u}=\langle-8,6\rangle$, find:
a. $2(\mathbf{v}+\mathbf{u})$
b. $|2 \mathbf{v}+2 \mathbf{u}|$
$\begin{aligned} & 2\langle-12,4\rangle \\ = & \langle-24,8\rangle\end{aligned}$

$$
\begin{aligned}
& \sqrt{(-24)^{2}+8^{2}} \\
= & \sqrt{640}=8 \sqrt{10}
\end{aligned}
$$

c. $(7 / 6) \mathbf{v}-(2 / 3) \mathbf{u}$

$$
\frac{7}{6}\langle-4,-2\rangle-\frac{2}{3}\langle-8,6\rangle
$$

$$
=\left\langle-\frac{14}{3},-\frac{7}{3}\right\rangle+\left\langle\frac{16}{3},-\frac{12}{3}\right\rangle
$$

$=\left\langle-\frac{14}{3},-\frac{7}{3}\right\rangle+\left\langle\frac{16}{3},-\frac{12}{3}\right\rangle$
$=\left\langle\frac{2}{3},-\frac{19}{3}\right\rangle$

$$
=\left\langle\frac{2}{3},-\frac{19}{3}\right\rangle
$$

4. Find a unit vector in the direction of $\mathbf{v}=\langle-4,-5\rangle$.

$$
\begin{gathered}
|\vec{v}|=\sqrt{(-4)^{2}+(-5)^{2}}=\sqrt{16+25}=\sqrt{41} \\
\left\langle-\frac{4}{\sqrt{41}}, \frac{-5}{\sqrt{41}}\right\rangle
\end{gathered}
$$

5. Find the direction angle (in degrees) of each vector.

6. Find a vector with magnitude 6 in the direction of $\mathbf{c}=5 \mathbf{i}-2 \mathbf{j}$.

$$
\begin{aligned}
|\vec{c}|= & \sqrt{25+4}=\sqrt{29} \\
& \text { unit vector } \left.=\left(\frac{5}{\sqrt{29}} \hat{\imath}-\frac{2}{\sqrt{29}} \hat{\jmath}\right) \xrightarrow{\times 6} \quad \frac{30}{\sqrt{29}} \hat{\imath}-\frac{12}{\sqrt{29}} \hat{\jmath}\right]
\end{aligned}
$$

7. Given $\mathrm{A}(3,1)$ and $\mathrm{B}(2,-4)$. Label all vectors that you draw.
a. Graph the position vectors to A and B using the graph at the right.
b. Find $\overrightarrow{O A}+\overrightarrow{O B}$ algebraically and graphically. $\langle 5,-3\rangle$
c. Find the magnitude of $\overrightarrow{O A}+\overrightarrow{O B} \cdot \sqrt{25+9}=\sqrt{34}$
d. Using the position vectors in part a, graph $\overrightarrow{O B}-\overrightarrow{O A}$ using the graph at the right. $\overrightarrow{O B}+(-\overrightarrow{O A})$
e. Find $\overrightarrow{O B}-\overrightarrow{O A}$ algebraically. $\langle-1,-5\rangle$

8. $\overrightarrow{P Q}=\langle 2,-4\rangle$
a. Find Q if $\mathrm{P}=(4,-3)$. head-minus-tail

$$
\begin{array}{cc}
\langle x-4, y--3\rangle=\langle 2,-4\rangle \\
x-4=2 \\
y+3=-4 & (6,-7)
\end{array}
$$

b. Find P if $\mathrm{Q}=(4,-3)$.

$$
\begin{aligned}
& \langle 4-x,-3-y\rangle=\langle 2,-4\rangle \\
& 4-x=2 \quad(2,1) \\
& -3-y=-4
\end{aligned}
$$

9. If $\mathbf{u}=\langle-1,5\rangle$ and $\mathbf{v}=\langle-10,3\rangle$, find the vector projection of \mathbf{u} onto \mathbf{v}.

$$
\operatorname{proj}_{v} u=\frac{u \cdot v}{|v|^{2}} v=\left(\frac{10+15}{109}\right)\langle-10,3\rangle=\left(\frac{25}{109}\right)\langle-10,3\rangle \text { or }\left\langle-\frac{250}{109}, \frac{75}{109}\right\rangle
$$

10. Find the value of a if the vectors $\langle 3,12\rangle$ and $\langle\mathrm{a}, 48\rangle$ are:
a. parallel ${ }^{-4}$
b. orthogonal dot prod $=0$
$\langle 3,12\rangle .4\langle a, 48\rangle \quad a=12$

$$
\begin{aligned}
3 a+12(48)=0 \quad 3 a & =-12(48) \\
a & =-4(48)=-192
\end{aligned}
$$

11. Find the angle between the vectors $\mathbf{u}=\langle-3,7\rangle$ and $\mathbf{v}=\langle 2,5\rangle$.
$\cos \theta=\frac{u \cdot v}{|u||v|} \rightarrow \cos \theta=\frac{-6+35}{\sqrt{58} \sqrt{29}} \rightarrow \theta=45^{\circ}$
12. A ship leaves Honolulu at a bearing of 150 degrees at 345 mph . The wind blows with a bearing of 210 degrees at 70 mph . Draw a vector diagram.
a. Find the component form of the ship and wind velocities.

$$
\begin{aligned}
& \text { ship: }\left\langle 345 \cos 300^{\circ}, 345 \sin 300^{\circ}\right\rangle \\
& \text { wind: }\left\langle 70 \cos 240^{\circ}, 70 \sin 240^{\circ}\right\rangle
\end{aligned}
$$

b. Find the component form of the velocity of the ship after taking into account the wind.

$$
\text { resultant : }\left\langle 137.500, \frac{-359.401\rangle}{A}\right.
$$

c. Find the actual speed and compass bearing of the ship.

$$
\begin{aligned}
& \text { actual speed }=384.805 \mathrm{mph} \\
& \text { direction angle }=\tan ^{-1}\left(\frac{B}{A}\right)=-69.064^{\circ} \\
& \text { bearing }=159.064^{\circ}
\end{aligned}
$$

13. A soccer player kicks a ball from 70 feet away from the goal. The ball is kicked from the ground with an initial velocity of $90 \mathrm{ft} / \mathrm{sec}$ at an angle of elevation of 15°.
a. Write a set of parametric equations to represent the horizontal and vertical distance of the ball t seconds after it was kicked. Sketch a graph of the path of the ball, labeling axes.

$$
\begin{aligned}
& x=90 \cos 15^{\circ} t \\
& y=-16 t^{2}+90 \sin 15^{\circ} t+0
\end{aligned}
$$

b. If the goal is 8 feet tall, will the ball make it into the goal? If not, by how much does the ball miss?
\downarrow
No.
$70=90 \cos 15^{\circ} t \rightarrow$ solve for $t \approx 0.805$ Misses by $0.3: 3 \mathrm{ft}$.
$y \approx 8.383 \mathrm{ft}$.
at that time
c. If the player wanted the ball to enter the goal 7 feet above ground (just above the goalkeeper), at what initial velocity should he have kicked the ball? (Assume the angle of elevation is still 15°).

$$
\begin{aligned}
& 7=-16 t^{2}+v \sin 15^{\circ} t \\
& 70=v \cos 15^{\circ} t \rightarrow t=\frac{70}{v \cos 15^{\circ}} \\
& 7=-16\left(\frac{70}{v \cos 15^{\circ}}\right)^{2}+\lambda \sin 15^{\circ}\left(\frac{70}{x \cos 15^{\circ}}\right) \\
& 0.735=\left(\frac{70}{v \cos 15^{\circ}}\right)^{2}
\end{aligned}
$$

